Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin. USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Wang, M., Zhong, S., Lin, J. \& Fang, B. (1995). J. Org. Chem. 60. 7364-7365.

Acta Cryst. (1998). C54, 834-837

Three Intermediates in the Synthesis of Chrysanthemic Acid

Guy Baudoux, ${ }^{a}$ Bernadetie Norberg, ${ }^{a}$ Laurent Provins, ${ }^{b}$ Alexandre Froidbize, ${ }^{b}$ Alain Krief ${ }^{b}$ and Guy Evrard ${ }^{a}$
${ }^{a}$ Laboratoire de Chimie Moléculaire Structurale, Facultés Universitaires Notre-Dame de la Paix, Rue de Bruxelles 61, B-5000 Namur, Belgium, and ${ }^{h}$ Laboratoire de Chimie Organique de Synthèse, Facultés Universitaires Notre-Dame de la Paix, Rue de Bruxelles 61, B-5000 Namur, Belgium. E-mail: baudoux@sbbio.be

(Received 3 December 1997; accepted 6 January 1998)

Abstract

The structures of three compounds, namely, dimethyl 2-\{(1S)-1-[(4S)-2,2-dimethyl-1,3-dioxolan-4-yl]-2-methyl-2-nitropropyl\} malonate [$\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{8}$, (I)], dimethyl 2-\{(1S)-1-[(4S)-2,2-dimethyl-1,3-dioxolan-4-yl]-2-methyl-2(phenylsulfonyl)propyl\}malonate $\left[\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{8} \mathrm{~S}\right.$, (II)] and dimethyl (3S)-2,2-dimethyl-3-[(4S)-2,2-dimethyl-1,3-di-oxolan-4-yl]cyclopropane-1,1-dicarboxylate $\left[\mathrm{C}_{1+} \mathrm{H}_{22} \mathrm{O}_{6}\right.$, (III)], which are intermediates in the synthesis of

 chrysanthemic acid, are presented and discussed.
Comment

Some esters of chrysanthemic acid are powerful insecticides (Elliott \& Janes, 1978) and significant efforts have been made to design synthetic routes which produce them in high yield and with high enantiomeric purity. Dimethyl 2,2-dimethyl-3-(2,2-dimethyl-1,3-dioxolan-4-yl)cyclopropane-1,1-dicarboxylate, (III), is a valuable intermediate of chrysanthemic acid and we have studied a new diastereoselective synthesis (see scheme below) of this compound (Froidbize, 1997; Krief et al., 1998). This synthesis uses the enantiomerically pure alkylidene malonate (1) (produced from D-mannitol) as the starting compound. During this study, it was necessary to unambiguously establish the relative stereochemistry of intermediate malonates (I) and (II), as well as the target molecule (III), and so their structures were determined by single-crystal X-ray diffraction.

(I)
(II)

(IV)
(III)
(a) $\mathrm{LiC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NO}_{2}$. DMSO. 293 K .24 h :
(b) $\mathrm{LiC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}_{2} \mathrm{Ph}$. THF. 273 K .2 h :
(c) $\mathrm{Cs}_{2} \mathrm{CO}_{3}$. DMSO. 353 K .24 h :
(d) $\mathrm{C}_{2} \mathrm{CO}_{3}$, DMSO, 353 K .8 h.

Compound (I) (Fig. 1) was obtained in 72% yield by a diastereoselective Michael addition of 2-lithio-2nitropropane on alkylidene malonate (1). The absolute configuration of compound (1) being known, it was possible to establish the configuration of (I) to be $(3 S, 4 S)$. The dioxolane ring ($\mathrm{C} 4-\mathrm{C} 6, \mathrm{O}, \mathrm{O} 6$) is in the so-called 'envelope' conformation (Dunitz, 1979), with the O 5 atom out of the plane defined by the other four atoms. The conformation around the $\mathrm{Cl}-$ C3 single bond is energetically-disfavoured 'eclipsed', with the $\mathrm{Hl}-\mathrm{Cl}$ and $\mathrm{C} 3-\mathrm{C} 2$ bonds facing each other (Table 1). In contrast, the conformation around the C3C2 single bond is 'staggered', the nitro group and the Cl atom being in anti positions. Consequently, the Hl atom, which is close to the two methyl groups of the nitropropyl substituent, is in a crowded environment.

Fig. 1. The molecular structure of compound (I). Displacement ellipsoids are drawn at the 50% probability level and the H 1 atom is linked to Cl.

Compound (II) (Fig. 2) was obtained in 58% yield by a diastereoselective Michael addition of 2-lithio-2phenylsulfonylpropane on compound (1). The absolute configuration of compound (II) is $(3 S, 4 S)$, for the same reason as for compound (I), and the dioxolane ring (C4C6, O5, O6) is also in an 'envelope' conformation, with the C 6 atom out of the plane defined by the other four atoms. The conformations around the $\mathrm{Cl}-\mathrm{C} 3$, $\mathrm{C} 3-\mathrm{C} 2$ and $\mathrm{C} 3-\mathrm{C} 4$ single bonds are all 'staggered' (Table 1). The Hl and C 2 atoms are in anti positions. Consequently, the H 1 atom is easily accessible.

Fig. 2. The molecular structure of compound (II). Displacement ellipsoids are drawn at the 50% probability level and the Hl atom is linked to Cl .

Compound (III) (Fig. 3) was obtained by two methods (see scheme above). If adduct (I) is heated with caesium carbonate in dimethylsulfoxide (DMSO), a 3:1 mixture

Fig. 3. The molecular structure of compound (III). Displacement ellipsoids are drawn at the 50% probability level.
of cyclopropanes (III) and (IV) is obtained in a 57% overall yield after 24 h (reaction c). However, if adduct (II) is treated in the same way, then cyclopropane (III) is obtained exclusively in 76% yield after 8 h (reaction d). The absolute stereochemistry of compound (III) is $(3 S, 4 S)$, the stereochemistry at the C 4 atom being known, and the dioxolane ring ($\mathrm{C} 4-\mathrm{C} 6, \mathrm{O} 5, \mathrm{O} 6$) is in an 'envelope' conformation, with the C 5 atom out of the plane defined by the other four atoms. The conformation around the C3-C4 single bond is 'staggered', with atoms H 3 and H 4 in anti positions (Table 1). The carbonyl O3 atom is agitated $\left[U_{\mathrm{cq}}=0.0866\right.$ (9) \AA^{2}].

The difference in reactivity of compounds (I) and (II) with caesium carbonate in DMSO can be partly explained by the difference in accessiblity of the acidic Hl atom, which is greater in compound (II) than in compound (I).

Experimental

The syntheses of compounds (I)-(IV) have been reported elsewhere (Krief et al., 1998). Compounds (I)-(III) were all crystallized, without special care, by evaporation of diethyl ether solutions over a period of 14 h .

Compound (I)

Crystal data
$\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{8}$
$M_{r}=333.33$
Orthorhombic
$P 2 \mid 2$, 2 ,
$a=8.003$ (5) \AA
$b=11.253$ (5) \AA
$c=18.461(5) \AA$
$V=1662.6(14) \AA^{3}$
$Z=4$
$D_{x}=1.332 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

$\mathrm{Cu} K \alpha$ radiation

$\lambda=1.54178 \AA$
Cell parameters from 25 reflections
$\theta=40-50^{\circ}$
$\mu=0.933 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Parallelepiped
$0.45 \times 0.20 \times 0.20 \mathrm{~mm}$
Transparent, colourless

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: none
2317 measured reflections
2140 independent reflections
2065 reflections with
$I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\mathrm{mt}}=0.098 \\
& \theta_{\max }=71.80^{\circ} \\
& h=0 \rightarrow 9 \\
& k=-8 \rightarrow 13 \\
& l=0 \rightarrow 22 \\
& 3 \text { standard reflections } \\
& \text { frequency: } 60 \mathrm{~min} \\
& \text { intensity decay: } 19 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R(F)=0.052$
$w R\left(F^{2}\right)=0.124$
$S=1.062$
2140 reflections
213 parameters

$$
\begin{aligned}
& \begin{array}{c}
w=1 \\
\\
\\
\\
\end{array}\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0501 P]\right. \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.194 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.332 \mathrm{e}^{-3} \AA^{-3}
\end{aligned}
$$

H atoms treated by a mixture of independent and constrained refinement

Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C)
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.54178 \AA$
Cell parameters from 25 reflections
$\theta=40-50^{\circ}$
$\mu=1.736 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Irregular
$0.30 \times 0.18 \times 0.14 \mathrm{~mm}$
Transparent, colourless
$R_{\text {int }}=0.016$
$\theta_{\text {max }}=71.79^{\circ}$
$h=-12 \rightarrow 13$
$k=-10 \rightarrow 0$
$l=-14 \rightarrow 10$
3 standard reflections frequency: 60 min intensity decay: 6.0%

Refinement

Refinement on F^{2}
$R(F)=0.030$
$w R\left(F^{2}\right)=0.077$
$S=1.083$
2234 reflections
266 parameters
H atoms treated by a mixture of independent
and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0379 P)^{2}\right.$ $+0.0142 P$]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Compound (III)

Crystal data
$\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{6}$
$M_{r}=286.32$
Orthorhombic
$P 2,2,21$
$a=7.3201$ (1) \AA
$b=10.719$ (1) \AA
$c=19.390$ (1) \AA
$V=1521.46(16) \AA^{3}$
$Z=4$
$D_{x}=1.250 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.54178 \AA$
Cell parameters from 25 reflections
$\theta=40-50^{\circ}$
$\mu=0.814 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Irregular
$0.18 \times 0.05 \times 0.04 \mathrm{~mm}$
Transparent, colourless

2016 reflections with $I>2 \sigma(I)$
$\omega / 2 \theta$ scans
$R_{\text {int }}=0.050$
Absorption correction: ψ ' scan (NRCVAX; Gabe et al., 1989)
71.86°
$h=-6 \rightarrow 9$
$k=-9 \rightarrow 13$
$T_{\text {min }}=0.853, T_{\text {max }}=0.997 \quad l=-17 \rightarrow 23$
2444 measured reflections
2215 independent reflections

Refinement

Refinement on F^{2}
$R(F)=0.049$
$w R\left(F^{2}\right)=0.142$
$S=1.082$
2215 reflections
181 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& u^{\prime}=1 /\left[\sigma^{2}\left(F_{\sigma}^{2}\right)+(0.0927 P)^{2}\right. \\
& +0.3468 \mathrm{P}] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}<0.001 \\
& \Delta \rho_{\text {max }}=0.241 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-0.291 \mathrm{e}^{\AA^{-3}} \\
& \text { Extinction correction: none } \\
& \text { Scattering factors from } \\
& \text { International Tables for } \\
& \text { Crustallography (Vol. C) }
\end{aligned}
$$

Table 1. Selected torsion angles $\left({ }^{\circ}\right)$

Compound (I)			
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Cl}$	$-165.31(15)$	$\mathrm{HI}-\mathrm{Cl}-\mathrm{C} 3-\mathrm{C} 2$	4.5
Compound (II)			
$\mathrm{S} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Cl}$	$144.55(17)$	$\mathrm{H} 4-\mathrm{C} 4-\mathrm{C} 3-\mathrm{Cl}$	170.5
$\mathrm{H} 1-\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 2$	173.9		
Compound (III)			
$\mathrm{H} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	176.4		

For all compounds, data collection: CAD-4 EXPRESS (EnrafNonius, 1992); cell refinement: CAD-4 EXPRESS. Data reduction: NONIUS93 (Baudoux \& Evrard. 1993) for (I) and (II); NRCVAX (Gabe et al., 1989) for (III). Program(s) used to solve structures: SIR92 (Altomare et al.. 1993) for (I) and (II); SHELXS97 (Sheldrick, 1990) for (III). For all compounds, program(s) used to refine structures: SHELXL97 (Sheldrick, 1997): molecular graphics: PLATON (Spek. 1990): software used to prepare material for publication: SHELXL97.

LP thanks the Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture (FRIA, Belgium) for financial support. The authors thank IBM Belgium, the Facultés Universitaires Notre-Dame de la Paix and the FNRS for the use of the Scientific Computing Facility, Johan Wouters for helpful discussions, and Thierry Ollevier for correcting the manuscript.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1167). Services for accessing these data are described at the back of the journal.

References

Altomare, A.. Cascarano, G.. Giacovazzo, C. \& Guagliardi. A. (1993). J. Appl. Cr'st. 26, 343-350.

Baudoux. G. \& Evrard. G. (1993). NONIUS93. Program for Data Reduction. Facultés Universitaires Notre-Dame de la Paix. Namur. Belgium.
Dunitz. J. (1979). X-ray Analysis And The Structure of Organic Molecules. p. 429. Ithaca: Corncll University Press
Elliott, M. \& Janes, N. F. (1978). Chem. Soc. Rev. 7, 473-505.
Enraf-Nonius (1992). CAD-4 EXPRESS. Enraf-Nonius. Delft. The Netherlands.

Flack, H. D. (1983). Acta Crust. A39. 876-881.
Froidbize, A. (1997). Mémoire de Licence, Facultés Universitaires Notre-Dame de la Paix. Namur, Belgium.
Gabc, E. J., Le Page, Y.. Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cnst. 22, 384-387.

Krief, A., Provins, L. \& Froidbize. A. (1998). Tetrahedron Lett. 39. 1437-1440.
Sheldrick, G. M. (1990). SHELXS97. Program for the Solution of Cristal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Cnustal Structures. University of Göttingen, Germany.
Spek. A. L. (1990). Acta Cryst. A46. C-34.

Acta Cryst. (1998). C54, 837-840

Lignin Model Compounds: 4,4'-O-Dimethyldehydrodiacetovanillone and 4,4'-O-Diethyldehydrodiacetovanillone

Márcia A. Ferreira, \dagger Márcia D. D. Costa, Isolda M. C. Mendes, Mariza G. Drumond, Dorila Pló-Veloso and Nelson G. Fernandes
Department of Chemistry, Federal University of Minas Gerais, CP 702, 31270.901, Belo Horizonte, Brazil. E-mail: nelsongf@apolo.qui.ufmg.br

(Received 21 April 1997; accepted 27 November 1997)

Abstract

The title compounds, $5,5^{\prime}$-diacetyl-2, $2^{\prime}, 3,3^{\prime}$-tetrameth-oxy-1, 1^{\prime}-biphenyl, $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6}$, and $5,5^{\prime}$-diacetyl-2, 2^{\prime} -diethoxy-3, 3^{\prime}-dimethoxy-1, 1^{\prime}-biphenyl (IUPAC nomenclature), $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{6}$, correspond to the 5,5'-biphenyl-type lignin model compound. They were synthesized from dehydrodiacetovanillone by alkylation with $\mathrm{CH}_{3} \mathrm{I}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$. In the former compound, all non- H atoms in the asymmetric unit are planar except for one C atom. In the latter compound, there are two molecules of different conformations, one of which is affected by disorder.

Comment

Lignin is a macromolecule which causes paper to yellow with age. It is a by-product of the cellulose industry and represents an important source for the production of aromatic substances. The main route for elucidation of the complex lignin structure has been the synthesis of small molecules followed by comparative NMR and IR studies of the model compound prepared and the lignin (Hergert, 1971; Drumond et al., 1989, 1992). Structure determination by diffraction techniques can be helpful in interpreting NMR and IR spectra. The title compounds,

[^0](I) and (II), described herein were synthesized with the aim of studying dimeric model compounds related to 5,5'-arylpropanoid substructures (biphenyl derivatives) frequently found in lignins (Sarkanen \& Ludwing, 1971; Adler, 1977; Chen, 1991).

(I)

(II)

The structure of $4,4^{\prime}$-O-dimethyldehydrodiacetovanillone, (I), is shown in Fig. 1. Half of the molecule constitutes an asymmetric unit. The average deviation of the aromatic ring C atoms from the best leastsquares plane through the rings is 0.010 (2) \AA. The dihedral angle between the two aromatic ring planes is $60.00(7)^{\circ}$. All of the non-H atoms in the asymmetric unit are almost planar, except for C10, which deviates by 1.291 (3) \AA from the best least-squares plane.

Fig. 1. The molecular structure of $4,4^{\prime}-O$-dimethyldehydrodiacetovanillone with ellipsoids drawn at the 50% probability level. [Symmetry code: (i) $-x, y,-z+\frac{1}{2}$.]

The structure of compound (II), 4, 4^{\prime} - O-diethyldehydrodiacetovanillone, is shown in Fig. 2. There are two molecules of different conformations in the asymmetric unit. The C (ring) - O (methoxy and/or ethoxy) bonds have a mean length of 1.371 (6) \AA (external standard deviation estimate, i.e. calculated from the scatter of the data). The average bond distances and angles in the aromatic rings are 1.389 (9) \AA and $120(1)^{\circ}$, respectively. As expected, the four aromatic rings are planar, the maximum deviation from the best least-squares plane being $0.022(2) \AA$. The dihedral angles between the aromatic rings are $114.9(2)$ and $60.2(1)^{\circ}$ in molecules A and B, respectively. The structure of the B isomer is analogous to that of compound (I).

[^0]: \dagger Deceased January 10. 1997.

